Industrial Water Conservation

Focus on Food Processors Existing Facilities most Common High Water Waste Systems

Quick Highlights of Resources & Case Studies

LEAN & WATER TOOLKIT

Achieving Process Excellence Through Water Efficiency

WaterSense at Work

Best Management
Practices for Commercial
and Institutional Facilities

www.epa.gov/lean

Typical Balance of Water Use by Food Processors

Source: Adapted from New Mexico Office of the State Engineer, "A Water Conservation Guide for Commercial, Institutional and Industrial Users," July 1999, available at: www.ose.state.nm.us/water-info/conservation/pdf-manuals/cii-users-guide.pdf.

Sanitation Wash Down Equipment Flow Control

High Pressure Hot Water Power Wash System

Instantaneous or Point of Use Hot Water Systems

Cooling Towers or Evaporative Condensers

Table 6-1. Percent of Make-Up Water Saved by Maximizing Cycles of

	New Concentration Ratio (CRf)									
Initial Concentration Ratio (Cri)		2	2.5	3	3.5	4	5	6	7	8
	1.5	33%	44%	50%	53%	56%	58%	60%	61%	62%
	2.0	-	17%	25%	30%	33%	38%	40%	42%	43%
	2.5	-	-	10%	16%	20%	25%	28%	30%	31%
ratic	3.0	-	-	-	7%	11%	17%	20%	22%	24%
cent	3.5	-	-	-	-	5%	11%	14%	17%	18%
Conc	4.0	-	-	-	-	-	6%	10%	13%	14%
Initial (5.0	-	-	-	-	-	-	4%	7%	9%
	6.0	-	-	-	-	-	-	-	3%	5%

Figure 6-3. Cooling Tower Water Usage at Various Cycles of Concention 100-Ton Tower

Innovative Alternative Tower Technologies Adiabatic or Hybrid

On Site Alternative Water Re-Use

Figure 8-1. Examples of Onsite Alternative Water Use

Table 8-2. Types of Available Treatment Based on Intended End Use Quality Needs*

Possible Sources	Filtration	Sedimentation	Disinfection	Biological Treatment	Other Treatment Considerations	
Rainwater	Depends	Depends	Depends	No	May be used for irrigation without additional treatment	
Stormwater Yes		Depends	Depends Depends		For non-potable use only	
Air Handling Condensate No		No	Yes	No	Segregate coil cleaning water	
Cooling Tower Blowdown	Depends	Depends	No	No	Consider TDS monitoring	
Reverse Osmosis and Nanofiltration Reject Water	No	No	No	No	Consider TDS monitoring	
Gray Water	No	Depends	No	Depends	Biologically unstable for long periods of storage unless treated; subsurface drip irrigation requires the least treatment	
Foundation Drain Water	Depends	No	Depends	No	May be hard if in alkaline soils	

*Key

Yes: Level of treatment likely needed

No: Level of treatment not likely needed

Depends: Treatment depends upon ultimate use

TEETH FOR A CUSTOMIZED SUSTAINABILITY MANAGEMENT PLAN

WILLIAM S. CORDRAY

LEED AP + OPERATIONS & MAINTENANCE

WILL@LODON.ORG

(630)362-4473

WWW.SUSTAINABILITYLODON.COM

