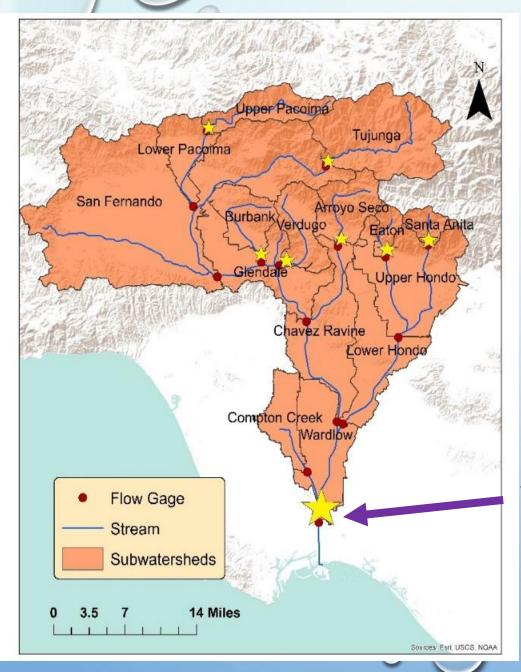
LA SUSTAINABLE WATER PROJECT: LA RIVER WATERSHED

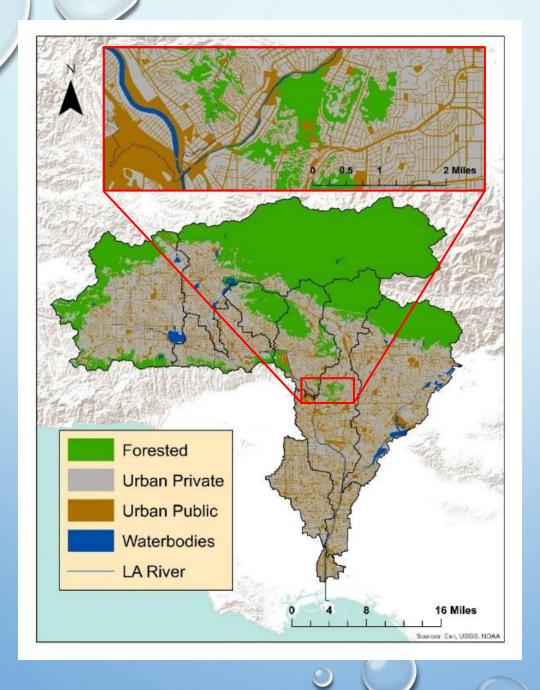

LA SUSTAINABLE WATER PROJECT OVERVIEW

CITY OF LA

- OPPORTUNITIES TO IMPLEMENT INTEGRATED WATER MANAGEMENT
- MEET WATER QUALITY STANDARDS
 - MAXIMIZE REUSE, MAXIMIZE STORMWATER CAPTURE, MAXIMIZE LOCAL WATER SUPPLY
- ANALYSIS OF POLICY AND REGULATORY CHALLENGES AND OPPORTUNITIES
- ANALYSIS OF ECONOMICS COSTS AND BENEFITS

STUDY AREAS

- BALLONA CREEK / HYPERION WATER RECLAMATION PLANT (WRP) / WEST COAST,
 CENTRAL, SANTA MONICA, AND HOLLYWOOD GROUNDWATER BASINS
- DOMINGUEZ CHANNEL & MACHADO LAKE / TERMINAL ISLAND WRP / WEST COAST AND CENTRAL GROUNDWATER BASINS
- LOS ANGELES RIVER / DONALD C. TILLMAN, LA GLENDALE, BURBANK WRPS / UPPER LA RIVER AREA GROUNDWATER BASINS


LA RIVER WATERSHED STUDY AREA

825 square mile watershed

Approximately 35% of watershed within LA City boundary

Measured flows at Wardlow Gage: 274,000 AFY (2004-2013)

Wardlow Gage

LA RIVER WATERSHED LAND USES

Highly developed, lots of undeveloped forested land at top of watershed

WATER QUALITY MODELING DECISION MATRIX

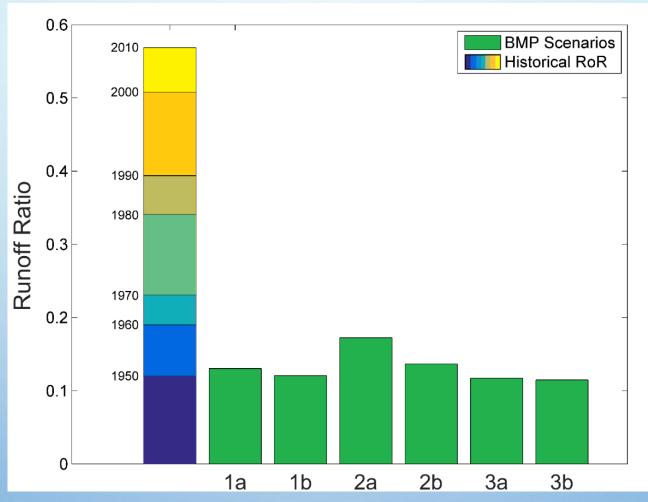
		Los Angeles River Scenarios	Baseline	1 a	1b	2a	2b	3a	3b
		BMPs	No BMPs	BR	PP + BR	VS + DP	PP + VS + DP	VS + IT	PP + VS + IT
		Volume Capture	0	10,396	10,396	10,396	10,396	10,396	10,396
		Storm Capture %	0	85th %	85th %	85th %	85th %	85th %	85th %
		Cost (Billions)	-	6.60	6.80	3.80	5.20	3.80	5.20
	Ancillary Criteria	BMP area (mi²)	-	10.8	5.8	14.4	9.6	14.4	9.6
] =	cili	Infiltration (% of Precip)	-	20.8%	22.0%	16.4%	20.4%	22.6%	22.9%
] {	r G	Infiltration (Million AFY)	-	0.16	0.17	0.13	0.16	0.17	0.17
		Peak Flow Reduction	-	47.0%	53.0%	29.0%	46.0%	55.0%	57.0%
		Dry Weather Days/yr	333	358	360	350	358	361	361
		DW Total Possible Exceedances/yr (Cu, Pb)	2997	3222	3240	3150	3222	3249	3249
		DW Total Possible Exceedances/yr (Zn)	333	358	360	350	358	361	361
	ır	Concentration Based TMDL (Cu)	13	47	49	35	39	43	44
	Dry Weather Exceedances/yr	Concentration Based TMDL (Pb)	0	12	13	7	10	16	14
l _		Concentration Based TMDL (Zn)	3	8	8	3	7	9	9
ris		Load Based TMDL (Cu)	307	68	71	62	69	75	75
Criteria	Dry	Load Based TMDL (Pb)	127	51	53	47	52	57	57
	Е	Load Based TMDL (Zn)	214	18	18	15	18	19	19
Quality		Wet Weather Days/yr	32	7	5	15	7	4	4
(ua		WW Total Possible Exceedances/yr (Cu, Pb, Zn	32	7	5	15	7	4	4
r o	· rr	Concentration Based TMDL (Cu)	5	1	2	1	1	0	2
ate	Wet Weather Exceedances/yr	Concentration Based TMDL (Pb)	2	0	0	0	0	0	0
Water		Concentration Based TMDL (Zn)	14	5	5	2	5	2	4
		Load Based TMDL (Cu)	6	1	2	0	1	0	2
		Load Based TMDL (Pb)	2	0	0	0	0	0	0
	Е	Load Based TMDL (Zn)	14	6	5	3	6	2	⁵ 4
		Cu Average Annual Load % Reduction	-	71.0%	60.8%	58.6%	55.6%	77.2%	61.2%
		Pb Average Annual Load % Reduction	-	83.1%	62.9%	59.7%	53.9%	79.4%	59.7%
		Zn Average Annual Load % Reduction	-	83.6%	63.1%	62.4%	59.4%	80.1%	59.9%

LOW IMPACT DEVELOPMENT EFFECTS

<u>Los Angeles</u> <u>River</u>	% Redeveloped		Volume Captured
	(2028)	Redeveloped Area (mi ²)	(AF)
Residential	12%	35.9	1,436
Commercial	10%	5.9	235
Industrial	22%	10.9	437
Educational	10%	1.8	70
	Pre - redevelopment	Post - redevelopment	% Reduction
Volume Captured			
(AF)	10,396	8,218	20.95%

City of LA-type LID ordinance implemented across the watershed. These numbers could be greatly expanded by expanding ordinance to include resale, and by establishing partnerships with NGOs to increase voluntary implementation.

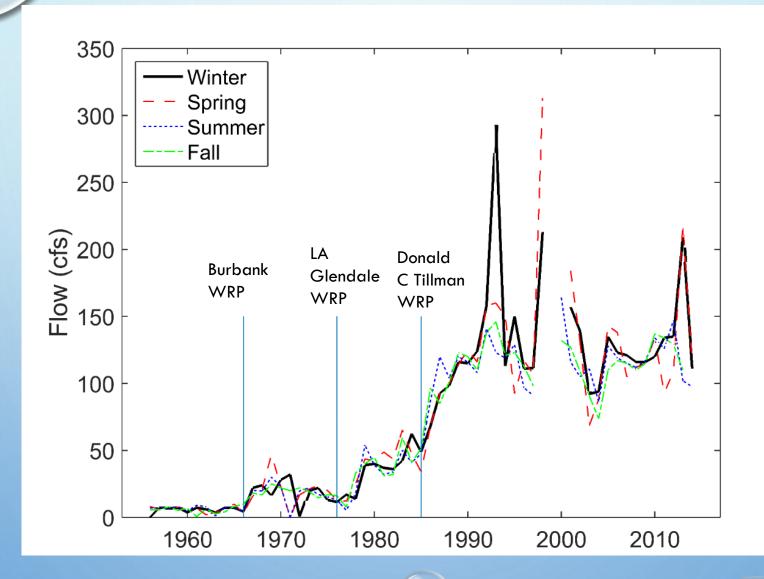
WHAT MAKES UP THE LA RIVER FLOWS?


- CURRENT STATE:
 - WATER RECLAMATION PLANT (WRP) EFFLUENT DISCHARGE
 - URBAN RUNOFF
 - RISING / UPWELLING GROUNDWATER
- BUT FLOWS ARE CHANGING
 - MORE RUNOFF WILL BE CAPTURED AS WATERSHED SCALE BMP PROGRAMS
 (E.G., EWMPS) ARE IMPLEMENTED & LID PRACTICES MORE BROADLY INSTALLED
 - INCREASED FOCUS ON LOCAL WATER SUPPLY MAY LEAD TO REUSE OF ADDITIONAL WRP EFFLUENT (CURRENTLY DISCHARGED INTO LAR)
 - INCREASED USE OF ULARA GROUNDWATER BASINS MAY LEAD TO LESS OR NO RISING GROUNDWATER.

BMPS REDUCE LAR FLOWS

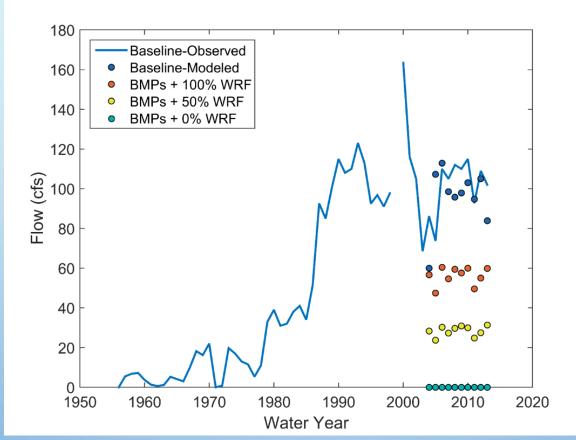
Samaan	Modeling Flow (2004-2013), no BMPs			Flow with BMPs			
Season	CFS	MGD	AFY	CFS	MGD	AFY	
Fall	134	87	97,000	91	59	66,000	
Winter	188	122	136,000	100	65	72,000	
Spring	178	115	129,000	89	58	64,000	
Summer	142	92	103,000	87	56	63,000	

Modeled median seasonal flows at Wardlow Gage with and without BMPs.


RUNOFF RATIOS

- BMPs also influence the volumes of water that run off the watershed
- Historical (1940 2010 data) runoff ratios and runoff ratios after implementing BMPs (2004-2013 data)
- Runoff ratios post BMPs are similar to those in the 1950s and 1960s

9


HISTORIC SEASONAL ANNUAL MINIMUM FLOWS IN THE LAR

Historic seasonal annual minimum flows in the LAR, measured at the Wardlow gage; blue vertical lines represent Water Reclamation Plants coming online

10

MODELED ANNUAL MINIMUM FLOWS CHANGE AT WARDLOW GAGE

Annual minimum flows at the Wardlow gage (blue line) compared with modeled flow before BMPs (blue points, 2004-2013 data), and post-BMP flows with varying amounts of WRP flow (0% - aqua, 50% - yellow, 100% - orange points)

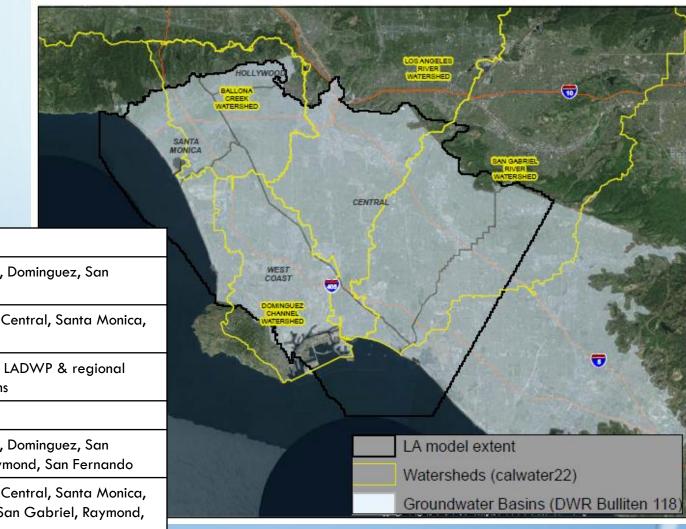
In modeled scenarios with no water reclamation plant effluent flows discharged to LAR and implementation of BMPs to manage 85th percentile storm, annual minimum flows go to zero at Wardlow Gage

LOW FLOWS (7Q10)

Gage	Time Period	Years	7Q10 (cfs)
Wardlow	1956-1985	30	42.2
Wardlow	1986-2014	29	157
Arroyo Seco	1917-2014	98	1.7

7Q10 flow volumes (defined as the lowest average discharge over a period of one week with a recurrence interval of 10 years) shift in 1986 when DCTWRP comes online

No 7Q10 flow change was observed at Arroyo Seco, a less developed watershed (gage just below forested area), from 1917-2014 (~2 cfs over entire period).

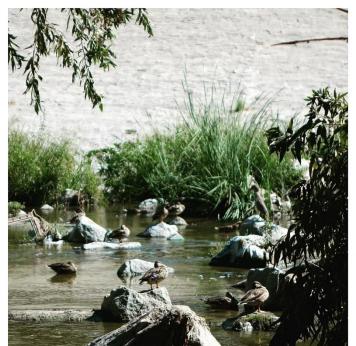

CONCLUSIONS

- CHANGES TO THE CURRENT SOURCES OF FLOW TO THE LA RIVER CAN REDUCE FLOWS IN THE CHANNEL TO ZERO, IN PARTICULAR DURING MINIMUM FLOWS
 - LOW FLOWS NEAR THE OUTLET OF THE LA RIVER WERE MUCH LOWER IN THE EARLY- TO MID- 20TH CENTURY THAN CURRENTLY.
 - CURRENT FLOW VOLUMES IN LA RIVER MAY NOT BE NECESSARY IN ORDER TO SUSTAIN ALL BENEFICIAL USES AND SHOULD NOT BE ASSUMED NECESSARY IN PLANNING STUDIES FOR THE LA RIVER.
 - STUDY NEEDS TO BE DONE TO QUANTIFY TRUE MINIMUM FLOW REQUIREMENT TO SUPPORT USES AND NEEDS (FLOOD CONTROL, WATER SUPPLY, ENHANCED HABITATS, RECREATION, ETC) AND DETERMINE IF THIS FLOW IS CLOSER TO HISTORICAL 10-15 CFS THAN CURRENT ~90-100 CFS

FUTURE RESEARCH: LA RIVER STUDY

- MULTIPLE NEEDS AND USES IN THE LA RIVER
 - HABITAT
 - RECREATION
 - MUNICIPAL WATER SUPPLY
 - FLOOD CONTROL
- STUDY TO ASSESS APPROPRIATE FLOWS TO SUPPORT ALL NEEDS AND USES MUST BE CONDUCTED
 - BENCHMARKS
 - METRICS
 - MONITORING
 - CLEAR VISION OF WHAT FUTURE LAR SHOULD LOOK LIKE

FUTURE RESEARCH - SURFACE / GROUNDWATER


Phase 1 Surface Model Ballona, LAR, Dominguez, San Watersheds Gabriel Groundwater Model West Coast, Central, Santa Monica, Hollywood Basins Climate Data Historic from LADWP & regional CIMIS stations Phase 2 Surface Model Ballona, LAR, Dominguez, San Watersheds Gabriel, Raymond, San Fernando Groundwater Model West Coast, Central, Santa Monica, Hollywood, San Gabriel, Raymond, Basins San Fernando Climate Data 2041-2060 projections accounting for likely changes in precipitation extremes, from future Alex Hall project

15

PUBLICATIONS

SUSTAINABLE LA WATER PROJECT REPORTS:

- LA RIVER WATERSHED, SEPTEMBER 2017
 HTTPS://GRANDCHALLENGES.UCLA.EDU/HAPPENINGS/2017/09/19/LO
 S-ANGELES-SUSTAINABLE-WATER-PROJECT-LOS-ANGELES-RIVER-WATERSHED/
- DOMINGUEZ CHANNEL AND MACHADO LAKE WATERSHEDS, AUG 2017.
 HTTPS://GRANDCHALLENGES.UCLA.EDU/HAPPENINGS/2017/08/03/NE
 W-UCLA-REPORT-LOOKS-AT-IMPROVING-WATER-QUALITY-AND-SUPPLY-IN-L-A-S-DOMINGUEZ-CHANNEL-AND-MACHADO-LAKE-WATERSHEDS/
- BALLONA CREEK WATERSHED, NOVEMBER 2015
 HTTPS://GRANDCHALLENGES.UCLA.EDU/HAPPENINGS/2015/11/13/10
 O-LOCAL-WATER-FOR-LA-COUNTY/
- OVERALL CITY-WIDE REPORT, LATE 2017

